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The potential flow upstream from a contraction in a rectangular flume is analysed. In
order to calculate the potential function, the flow is considered as the superposition
of sinks uniformly distributed in the contraction. The effect of boundaries is taken
into account by introducing virtual sinks. The calculation is performed in the complex
plane and provides a closed-form solution of the complex potential function. As an
illustration, the effect of contraction size and position is analysed, and the solution is
compared to experimental measurements and other numerical solutions for vertical
sluice gates.

1. Introduction
The determination of the flow pattern in the vicinity of a sluice gate has many

applications, such as the determination of the contraction coefficient, the calculation
of the pressure force exerted on the gate or the determination of the distortion of
the velocity profile induced by the contraction. Potential theory allows us to calculate
explicitly the free streamlines past an orifice, and then the contraction coefficient
(Batchelor 1967, § 6.13). Other studies have focused on the gravity effects for vertical
or inclined gates (Benjamin 1956; Larock 1969; Chung 1972), and more recent studies
have analysed, among other aspects, the effects on potential flow of the free-surface
disturbances upstream from a gate (Montes 1997; Vanden-Broeck 1997; Binder &
Vanden-Broeck 2007). Based on a comparison of his potential flow calculations with
experimental data, Montes (1997) showed that the real fluid effects have little influence
on the distribution of velocity and pressure. The determination of these functions is
particularly useful to calculate the pressure exerted on the walls or to determine the
velocity distribution for measuring purposes, for instance.

The potential flow problem is generally addressed by classical mapping of the
physical plane and the complex potential plane. While the free-surface profile
downstream from the gate can be determined explicitly in the case of non-gravity
flow, the solutions developed by the investigators cited above, taking account of the
presence of the free surface, require numerical schemes to evaluate the coordinates in
the complex potential plane.

More generally, this problem can be extended to any rectangular channel where
a contraction or an obstacle affects the streamlines. In this paper, we use the same
assumption of irrotational and inviscid flow to derive a closed-form solution of the
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Figure 1. Sketch of the system studied.

potential flow upstream from such a rectangular contraction. Closed-form solutions
may be particularly useful to validate or initialize numerical approaches, and the
simplifying assumptions have proved to be sufficient in many engineering applications.

After deriving the expression for the potential function in the complex plane, we
illustrate different configurations and compare them with experimental data and with
numerical methods reported in the literature.

2. Potential flow solution
2.1. Approach

We consider the flow in a rectangular flume ended by a contraction. We perform a
two-dimensional analysis of the flow upstream from the contraction, assuming that
the flow is infinite in the third direction. The fluid is assumed to be homogeneous,
inviscid and incompressible, and the flow to be irrotational. These assumptions allow
us to apply the potential theory and the principle of superposition to obtain the flow
field as a combination of elementary flows.

We use Cartesian coordinates with their origin at the flume contraction. The axes
are denoted x and y (see figure 1 for the position and orientation of axes), while
u and v represent the horizontal and vertical velocity components. The contraction
edges are located at y1 and y2 respectively, and the flume limits are y = 0 and y =Y .
Discharge per unit width is denoted q , and mean velocity is defined as U0 = q/Y . Far
from the contraction, the velocity magnitude is U0 and velocity vectors are parallel to
the flume boundaries. Next we search for the potential and stream functions upstream
from the contraction, φ(x, y) and ψ(x, y) respectively. We consider that the flow is
generated by a distributed sink located at the contraction, the total discharge through
the contraction being q . To perform the calculation, we first consider the contribution
of an infinitesimal sink dq , taking account of the flume boundaries. These boundaries
are considered by superposing virtual sinks of the same strength, each boundary being
a symmetry plane.

2.2. Point sink solution in a bounded channel

We consider an infinitesimal sink of discharge dq , located at coordinates (0, y0). We
use the complex coordinates, with i2 = −1, z = x + iy (position or affix), U = u − iv
(complex velocity), F = φ + iψ (complex potential) and dm = −dq/π (sink strength).
In z, the complex velocity generated by the sink in y0, denoted U (y0)(z), is

U (y0)(z) =
dm

z − iy0

. (2.1)
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The complex potential function is obtained by integration of (2.1) with respect
to z:

F (y0)(z) = dm log(z − iy0). (2.2)

Impermeable boundaries are created at y = 0 and y = Y by the addition of virtual
sinks of the same strength. Each boundary must be a symmetry plane. If y0 is the
position of a sink on the vertical, we achieve symmetry by adding virtual sinks on
the y-axis at y = −y0, y = 2Y − y0, y = −2Y − y0, y =2Y + y0, y = −2Y + y0, . . . ,
y = 2nY − y0, y = 2nY + y0, y = −2nY − y0, y = −2nY + y0, n= 2, . . . , ∞. Therefore,
the potential function, F (y0,b), is obtained as follows:

F (y0,b)(z) =

+∞∑
n=−∞

dm log(z − (2nY − y0)i) +

+∞∑
n=−∞

dm log(z − (2nY + y0)i). (2.3)

For the velocity field, we obtain

U (y0,b)(z) =

+∞∑
n=−∞

dm

z − (2nY − y0)i
+

+∞∑
n=−∞

dm

z − (2nY + y0)i
. (2.4)

Closed-form expressions can be obtained using the following identity (Abramowitz
& Stegun 1972, § 4.3):

cot ξ =
1

ξ
+ 2ξ

+∞∑
n=1

1

ξ 2 − n2π2
(2.5)

where ξ �→ cot(ξ ) denotes the cotangent function. Decomposing each term of the sum
into fractions of ξ − nπ and ξ + nπ, this identity can be rewritten as

cot(ξ ) =

+∞∑
n=−∞

1

ξ + nπ
; (2.6)

then, with the change of variables ξ ′ = iξ/a, a and ξ being complex numbers different
from 0:

+∞∑
n=−∞

1

ξ − inπa
=

1

a
i cot

(
i
ξ

a

)
=

1

a
coth

(
ξ

a

)
. (2.7)

The complex velocity (2.4) is therefore equal to

U (y0,b)(z) =
dmπ

2Y

[
coth

( π

2Y
(z + iy0)

)
+ coth

( π

2Y
(z − iy0)

)]
(2.8)

and the corresponding potential function is obtained by integration of (2.8) with
respect to z:

F (y0,b)(z) = dm
[
log

(
sinh

( π

2Y
(z + iy0)

))
+ log

(
sinh

( π

2Y
(z − iy0)

))]
. (2.9)

2.3. Sink distribution in the contraction

Experimental studies conducted on sluice gates (Finnie & Jeppson 1991; Roth &
Hager 1999) suggest that the horizontal velocity component u can be considered as
uniform at the contraction section (x =0). These results were verified numerically by
Montes (1997) for different contraction sizes. Such a configuration is obtained by
considering a sink uniformly distributed between the points (0,y1) and (0,y2).

The principle of superposition allows us to derive the corresponding solution by
integrating (2.4) and (2.9) with respect to y0, between y1 and y2. The infinitesimal sink
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strength is

dm = −q

π

dy0

y2 − y1

(2.10)

which yields the complex velocity:

U (z) = i
q

π(y2 − y1)

[
log

(
sinh

(
π

z + y2i

2Y

))
− log

(
sinh

(
π

z + y1i

2Y

))]

− i
q

π(y2 − y1)

[
log

(
sinh

(
π

z − y2i

2Y

))
− log

(
sinh

(
π

z − y1i

2Y

))]
. (2.11)

To obtain the complex potential F (z), the complex velocity U is now integrated
with respect to z. Let us denote g : ξ �→ g(ξ ) = log(sinh(ξ )) and G a primitive of g.
Writing g(ξ ) as

g(ξ ) = log

[
eξ

2
(1 − e−2ξ )

]
(2.12)

= − log(2) + ξ + log(1 − e−2ξ ) (2.13)

we find a primitive G of g defined by

G(ξ ) = −ξ log(2) +
ξ 2

2
+

1

2
Li2(e

−2ξ ) (2.14)

where Li2(ξ ) denotes the dilogarithm of ξ (Abramowitz & Stegun 1972, § 27.7), defined
as the primitive of ξ �→ − log(1 − ξ )/ξ being null in 0. When |ξ | < 1, Li2(ξ ) is also
equal to

Li2(ξ ) =

∞∑
n=1

ξ 2

n2
(2.15)

In the domain Re(ξ ) > 0, we have |e−2ξ | < 1 and (2.15) provides a method to compute
the dilogarithm. An excellent approximation of the complex dilogarithm is also given
by Clamond (2006).

After a few simplifications, the potential function is given by

F (z) = − q

Y
z +

q log 2

iπ
+

2qY i

π2(y2 − y1)

(
L

(
z + y2i

Y

)
− L

(
z + y1i

Y

)

− L

(
z − y2i

Y

)
+ L

(
z − y1i

Y

))
(2.16)

where

L(ξ ) = 1
2
Li2(e

−π ξ ). (2.17)

Equation (2.16) is the exact solution of the potential flow generated by the
distributed sink in the rectangular channel. Note that the second term of the complex
potential function, q log 2/iπ, is constant and can therefore be omitted. Far from
the contraction, Re(z/Y ) → +∞ and e−πRe(z)/Y → 0. Since Li2(0) = 0, the complex
potential function can be approximated by

F (z) ≈ −U0 z (2.18)

which is the potential function for a uniform velocity field. Finally, we obtain the
potential and stream functions φ(x, y) and ψ(x, y) defined as the real and imaginary
parts of F (x + iy).
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To refine the flow analysis near the contraction, we may choose different sink
distributions, taking into account some heterogeneity of the horizontal velocity in the
contraction section. The same framework can be applied, but we have no guarantee
of obtaining a closed-form solution for U and F . In this case, integration of (2.8) and
(2.9) must be performed numerically. We show in the next section that the uniform
distribution gives an accurate description of the velocity and pressure fields upstream
from the contraction.

3. Some illustrations and applications
The derived equations apply to any set of values 0 � y1 < y2 � Y . To illustrate

the interest of the approach, we first calculate the iso-potential and streamlines for
different configurations in order to analyse the effects of the boundaries and of
the sink distribution on the flow field. Then, we focus on the configuration of the
vertical sluice gate and compare our solution to experimental data and numerical
results provided by different authors. To simplify the notation, we denote W = y2 − y1

(contraction breadth) and Y0 = (y1 + y2)/2 the position of the contraction centre.

3.1. Potential and streamlines

In this section, we consider Y = 1 m and a unit discharge q = 1 m2 s−1. We plot different
figures to illustrate the effects of boundaries and of the contraction size on the flow
field. Figure 2(a) presents the solution plotted using (2.16) for a centred contraction
(Y0 =Y/2) with an opening W = Y/10. In the close vicinity of the orifice (figure 2b),
the iso-potential lines deviate significantly from the point sink solution (which yields
circles centred around the sink). The present solution, which gives a finite potential,
is more realistic, as already shown by Shammaa, Zhu & Rajaratnam (2005) with
a numerical approach. At a larger distance from the orifice, the distortion of the
iso-potential lines is due to the presence of boundaries. This effect is more visible in
the case of an orifice close to the boundary (Y0 = 0.25Y , figure 2c). The effect of the
contraction size can be observed by comparing figure 2(a) (W = Y/10) with figure 2(d)
(W =Y/2).

3.2. Velocity profile

In the next two sections, the configuration represents a vertical sluice gate, one
boundary of the contraction being the bottom. The y-axis is vertical and oriented
upward. Taking y1 = 0, (2.11) simplifies to

U (z) = i
q

πW

[
log

(
sinh

(
π

z + y2i

2Y

))
− log

(
sinh

(
π

z − y2i

2Y

))]
. (3.1)

A practical application is the velocity profile distortion on approaching the
contraction. This phenomenon has been studied experimentally by Roth & Hager
(1999) and Rajaratnam & Humphries (1982). In these papers, the distortion was
presented by plotting the horizontal velocity component as a function of the vertical
axis y, at different distances x from the contraction. With our approach, the horizontal
component u(x, y) is obtained by taking the real part of U (x + iy).

Figure 3 compares the present solution with the data provided by Rajaratnam &
Humphries (1982), experiment B1. The flow data are: Y = 0.42 m, Y0 =W/2 = 0.025 m,
q =0.0843 m2 s−1, and they measured the velocity components at 0.1 m, 0.5 m and
1 m upstream from the orifice. The comparison is shown on figure 3(a). The
correspondence between the model and the data is good, except in the close vicinity of
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Figure 2. Iso-potential and stream lines: (a) Y0 =Y/2, W = Y/10 and (b) a close-up near the
orifice; (c) Y0 = Y/4, W = Y/10; (d) Y0 = Y/2, W = Y/2.

the boundaries. The corresponding velocity field and the iso-velocity lines are shown
in figure 3(b).

3.3. Pressure field

The pressure field exerted on vertical gates has been studied experimentally by several
authors (Rajaratnam & Humphries 1982; Roth & Hager 1999) and numerically by
Montes (1997). Using the present velocity calculation, we apply the principle of energy
conservation along the vertical streamline on the upstream face of the gate. We obtain
the pressure at elevation y on the upstream face of the gate:

p(y) = ρg(H − y) − 1
2
ρv2(y) + p0 (3.2)

where v(y) is the vertical component of the velocity on the upstream face of the gate,
H is the water height upstream from the gate, g is the acceleration due to gravity,
ρ the specific weight of the fluid and p0 the atmospheric pressure (constant). For
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Figure 3. Comparison of our calculation with measurements by Rajaratnam & Humphries
(1982) (exp. B1): (a) horizontal velocity |u| at x = 0.1 m, 0.5 m and 1 m (x is the distance from
the gate); (b) iso-kinetic lines and velocity vectors.

simplicity, we take p0 = 0, p being the gauge pressure. The velocity component is
calculated using (2.11):

v(y) = − q

πW
log

(
sin(π(y + y2)/2H ) sin(π(y − y1)/2H )

sin(π(y − y2)/2H ) sin(π(y + y1)/2H )

)
(3.3)

where y2 denotes the upper limit of the orifice under the gate, y1 the lower limit of
the orifice. Note that this equation applies to a vertical gate above a sharp-crested
weir. In the case of a gate on a flat bed, y2 = W and y1 = 0. Equation (3.3) simplifies
to

v(y) = − q

πW
log

(
sin π(y + W )/2H

sin π(y − W )/2H

)
(3.4)

and

p(y) = ρg(H − y) − 1

2

ρU 2
0

π2

(
H

W

)2

log2

(
sin π(y + W )/2H

sin π(y − W )/2H

)
. (3.5)

Figure 4 compares the present calculation with the numerical calculation of Montes
(1997) for H/W =3 in free flow conditions. There is very little difference in the results.
The model also fits very well the large data set provided by Roth & Hager (1999).
However, the edge (x =0, y =W ) is a singular point and the vertical velocity v has
an infinite magnitude. This causes the relative pressure p to be negative, whereas it
should be equal to 0 since this point is the start of the free streamline under the gate.

The limit value of y where p(y) � 0, denoted yl , can be obtained by solving
p(yl) = 0 numerically. Since yl is close to W , a development in Taylor series gives a
good approximation of yl:

yl � W +
2H

π

α

1 − αβ
(3.6)

with

α = sin

(
πW

H

)
exp

[
− πW

U0H

√
2g(H − W )

]
and β = cot

(
πW

H

)
+

W

U0

√
2g

H − W
.
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For the example presented in figure 4, the exact value of yl is given by (yl − W )/(H −
W ) ≈ 0.0084, which is the value obtained with the approximate method (3.6) with a
relative error of 5 × 10−6.

The position and the value of the maximum pressure are easy to determine, for
example by solving the equation p′(y) = 0. The results (figure 5) are very close to
those presented by Montes (1997) validated with experimental data. We can conclude
that the present solution gives an accurate description of the pressure force on the
gate, although it cannot be used to predict the local pressure at the contraction edge,
which is a singular point.
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4. Conclusion
We derived a closed-form solution of the potential flow upstream from a contraction

in a rectangular flume. The main assumptions are that the flow is irrotational and
inviscid, and the contraction is taken into account by a homogeneous sink distribution.
With these assumptions, we obtain the exact solution of the potential flow, and no
approximation is required. Unlike previous calculations, the problem is solved directly
in the physical plane, and does not require conformal transformation between the
physical plane and the complex potential plane.

Since the complex function and the velocity components are expressed explicitly,
computation is very quick. The derived solution can be applied to asymmetric
configurations, such as vertical sluice gates on a flat bed. The calculated velocity
and pressure fields are in very good agreement with previous computations and
experiments. One possible application is the calculation of the pressure force on a
vertical sluice gate. The present solution can also be used for other configurations
using conformal transformations.
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